quasi-periodic - définition. Qu'est-ce que quasi-periodic
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est quasi-periodic - définition

MATHEMATICAL FUNCTION
Quasi-periodic function
  • 2π}}+sin(''x'') satisfies the equation ''f''(''x''+2π)=''f''(''x'')+1, and is hence arithmetic quasiperiodic.

Quasiperiodicity         
MATHEMATICAL NOTION OF RECURRENCE WITH UNPREDICTABLE PERIOD
Quasiperiodic; Quasi periodic; Quasi-periodic; Quasi-period; Quasi-periodicity
Quasiperiodicity is the property of a system that displays irregular periodicity. Periodic behavior is defined as recurring at regular intervals, such as "every 24 hours".
Periodic paralysis         
HUMAN DISEASE
Familial periodic paralysis; Periodic Paralysis; Paralyses, familial periodic; Periodic Paralyses; Periodic paralyses; Familial Periodic Paralysis; Familial periodic paralyses
Periodic paralysis is a group of rare genetic diseases that lead to weakness or paralysis from common triggers such as cold, heat, high carbohydrate meals, not eating, stress or excitement and physical activity of any kind. The underlying mechanism of these diseases are malfunctions in the ion channels in skeletal muscle cell membranes that allow electrically charged ions to leak in or out of the muscle cell, causing the cell to depolarize and become unable to move.
periodic table         
  • Mendeleev's 1869 periodic table
  • hydrogen-like]] atomic orbitals showing probability density and phase (g orbitals and higher are not shown)
  • Idealized order of subshell filling according to the [[Madelung rule]]
  • Dmitri Mendeleev
  • Trend in electron affinities
  • [[Otto Theodor Benfey]]'s spiral periodic table (1964)
  • Periodic table of van den Broek
  • Graph of first ionisation energies of the elements in electronvolts (predictions used for elements 105–118)
  • Glenn T. Seaborg
  • Henry Moseley
  • Mendeleev's 1871 periodic table
  • c0ffff}} [[Noble gases]]{{col-end}}
  • Periodic table of Alfred Werner (1905), the first appearance of the long form<ref name=Thyssen/>
TABLE SYSTEMATICALLY PLACING ELEMENTS BASED ON ATOMIC NUMBER AND RECURRENT PROPERTIES
Periodic Table; Periodic table (big); Periodic table (detailed cells); Periodic table of the elements; Periodic table of the chemical elements; Periodic table/Huge Table; Periodic table/Big Table; Periodic table of elements; Periodic Table of the Elements; Periodic table (detailed); Periodic system; Periodic system of elements; Periodic chart of the elements; Periodic Chart of the elements; Periodic chart; Periodic Chart; Mendeleev periodic table; Table of elements; Periodic properties; Periodic Properties; Elements (table); Periodic table elements; Huge periodic table; Periodic table (huge); Mendeleev periodic chart; Periodic table large; Periodic table (large); Peroidic table of elements; Mendeleev table; The periodic table of the elements; Periodicity of the elements; Compound of elements; The Periodic Table of Elements; Organization of the periodic table; Periodic table of chemical elements; The Periodic table; Periodic patterns; Group 2A; Periodic table of Elements; Periodic tables; Mendeleyev table; Chemical family; PeriodicTable; Mendeleyev's periodic law; Mendeleev's table; Periodic table (standard); Large version of the periodic table; List of periodic table-related articles; Wide periodic table (large version); Wikipedia talk:Articles for creation/Wide periodic table (large version); The periodic table of the chemical elements; Standard periodic table; Table of Elements; List of Periodic table related articles; Peroidic table; Mendeleev's periodic table; Placement of hydrogen in the periodic table; Categorisation of the periodic table; Placement of lanthinides and actinides in the periodic table; Periodic table (large version); Chemical periodic table; Periodic Table of Elements; Pariodic table; Atomic table; Periodic table (large cells); Periodic Table of Chemical Elements; Period table
In chemistry, the periodic table is a table showing the chemical elements arranged according to their atomic numbers.
N-SING: the N

Wikipédia

Quasiperiodic function

In mathematics, a quasiperiodic function is a function that has a certain similarity to a periodic function. A function f {\displaystyle f} is quasiperiodic with quasiperiod ω {\displaystyle \omega } if f ( z + ω ) = g ( z , f ( z ) ) {\displaystyle f(z+\omega )=g(z,f(z))} , where g {\displaystyle g} is a "simpler" function than f {\displaystyle f} . What it means to be "simpler" is vague.

A simple case (sometimes called arithmetic quasiperiodic) is if the function obeys the equation:

f ( z + ω ) = f ( z ) + C {\displaystyle f(z+\omega )=f(z)+C}

Another case (sometimes called geometric quasiperiodic) is if the function obeys the equation:

f ( z + ω ) = C f ( z ) {\displaystyle f(z+\omega )=Cf(z)}

An example of this is the Jacobi theta function, where

ϑ ( z + τ ; τ ) = e 2 π i z π i τ ϑ ( z ; τ ) , {\displaystyle \vartheta (z+\tau ;\tau )=e^{-2\pi iz-\pi i\tau }\vartheta (z;\tau ),}

shows that for fixed τ {\displaystyle \tau } it has quasiperiod τ {\displaystyle \tau } ; it also is periodic with period one. Another example is provided by the Weierstrass sigma function, which is quasiperiodic in two independent quasiperiods, the periods of the corresponding Weierstrass function.

Functions with an additive functional equation

f ( z + ω ) = f ( z ) + a z + b   {\displaystyle f(z+\omega )=f(z)+az+b\ }

are also called quasiperiodic. An example of this is the Weierstrass zeta function, where

ζ ( z + ω , Λ ) = ζ ( z , Λ ) + η ( ω , Λ )   {\displaystyle \zeta (z+\omega ,\Lambda )=\zeta (z,\Lambda )+\eta (\omega ,\Lambda )\ }

for a z-independent η when ω is a period of the corresponding Weierstrass ℘ function.

In the special case where f ( z + ω ) = f ( z )   {\displaystyle f(z+\omega )=f(z)\ } we say f is periodic with period ω in the period lattice Λ {\displaystyle \Lambda } .